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Ghrelin and diabetes
Ghrelin’s ability to increase body weight by 
stimulating appetite and augmenting food 
intake and to increase secretion of growth 
hormone is mainly mediated by its binding 
to the CNS and pituitary growth hormone 
secretagogue receptors (GHSRs) (1). The 
presence of these receptors in all four pan-
creatic endocrine cell populations (α, β, γ, 
and δ) suggests that ghrelin also has potent 
hormonal effects to maintain blood glucose 
(2). Indeed, ghrelin counteracts hypoglyce-
mia by suppressing insulin secretion while 
increasing glucagon secretion (2). In addi-
tion to its glucoregulatory effects, Gupta, 
Burstein, and co-authors provide evidence 
in this issue of the JCI that ghrelin dictates 
pancreatic and, more specifically, islet size, 
in turn influencing islet function (3).

Patients with obesity often present 
with decreased plasma levels of ghrelin (4) 
and greater pancreatic volume (5), corrob-
orating the findings from Gupta, Burstein, 
and co-authors. Plasma ghrelin levels in 
patients with diabetes mellitus (DM) are 
not nearly as clear-cut and may depend 
on the etiology and stage of diabetes. For 

example, plasma ghrelin levels are higher 
in patients with maturity-onset diabetes 
of the young (MODY) as compared with 
patients with type 1 or type 2 DM (6). This 
islet-colocalized expression of ghrelin, cou-
pled with the presence of GHSRs, suggests 
that ghrelin mediates pancreatic islet form 
and function. Indeed, studies in perfused 
rat pancreas demonstrate that ghrelin is 
secreted from islets (7). Moreover, neutral-
izing the acute actions of ghrelin enhances 
glucose-stimulated insulin secretion from 
perfused pancreas or isolated islets (8). 
Further evidence that ghrelin governs pan-
creatic development is found in fetal islets, 
where ghrelin-secreting ε cells are present 
(9). Using the power of mouse genetics to 
allow for the loss of ghrelin in the devel-
oping mouse or adult mouse, the Zigman 
laboratory has established ghrelin as a reg-
ulator of islet mass (3) (Figure 1).

Ghrelin-knockout mice display 
increased islet size
In this issue of the JCI, Gupta, Burstein, and 
co-authors demonstrated that reducing 
ghrelin, by germline or conditional deletion 

of ghrelin cells in juvenile and adult mice 
increased islet size, the percentage of very 
large islets, and β cell cross-sectional area 
and improved glucose tolerance through 
increased insulin secretion. The increased 
islet size as a result of ghrelin knockout was 
observed in mice at four weeks of age and 
became more pronounced at 10 to 12 weeks 
of age but was not apparent in neonatal mice, 
suggesting that increased islet size could 
occur when ghrelin is absent during ear-
ly development. In fact, ghrelin-knockout 
mice challenged with a high-fat diet (HFD) 
had larger islet sizes and greater numbers 
of very large islets compared with WT mice 
challenged with a HFD, suggesting that 
decreased ghrelin was not solely respon-
sible for islet and β cell enlargement. The 
authors stated that elevated β cell numbers 
in ghrelin-knockout mice was likely medi-
ated by reduced β cell apoptosis as opposed 
to proliferation. Ghrelin-knockout mice also 
exhibited an increase in α cell cross-section-
al area, further highlighting ghrelin’s ability 
to regulate islet cell abundance.

To unveil potential molecular medi-
ators through which decreased ghrelin 
results in islet proliferation, Gupta, 
Burstein, and co-authors performed sin-
gle-cell RNA-Seq of adult ghrelin-knock-
out mice. The four traditional islet endo-
crine cell types were those clusters with 
the lowest numbers of differentially 
expressed genes due to ghrelin deletion. 
Nevertheless, within β cells, Manf, Dna-
jc3, Calm1, mt-Nd2, and Gnas were among 
the most highly upregulated genes, while 
many ribosomal function genes were 
downregulated. Interestingly, ghrelin 
deletion did not alter the expression 
of Ghsr or the genes encoding the four 
main islet hormones. However, within δ 
cells, in which Ghsr expression was high-
est within islet cell clusters, Resp18, Ptn, 
and Arg1 were among the most highly 
upregulated in response to ghrelin dele-
tion. Arg1 was also upregulated in α cells. 
Interestingly, activated stellate cells and 
endothelial cells exhibited the highest 
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Figure 1. Ghrelin affects pancreatic cell size. Lean (juvenile and adult) and obese ghrelin cell–knockout mice develop hypertrophied islets, β cells, and α 
cells. Single-cell RNA-Seq suggests that a subset of differentially expressed genes within the islet lead to elevated insulin secretion and glucose clearance. 

https://doi.org/10.1172/JCI175799
mailto://will.holland@hsc.utah.edu
https://doi.org/10.1002/cne.20823
https://doi.org/10.1002/cne.20823
https://doi.org/10.1002/cne.20823
https://doi.org/10.3390/biom12030407
https://doi.org/10.3390/biom12030407
https://doi.org/10.3390/biom12030407
https://doi.org/10.3390/biom12030407
https://doi.org/10.1080/19382014.2018.1557486
https://doi.org/10.1080/19382014.2018.1557486
https://doi.org/10.1007/s12020-015-0627-5
https://doi.org/10.1007/s12020-015-0627-5
https://doi.org/10.1007/s12020-015-0627-5
https://doi.org/10.1007/s12020-015-0627-5
https://doi.org/10.2337/db06-0878
https://doi.org/10.2337/db06-0878


The Journal of Clinical Investigation   C O M M E N T A R Y

3J Clin Invest. 2023;133(24):e175799  https://doi.org/10.1172/JCI175799

 12. Mosa R, et al. Long-term treatment with the 
ghrelin receptor antagonist [d-Lys3]-GHRP-6 
does not improve glucose homeostasis in non-
obese diabetic MKR mice. Am J Physiol Regul 
Integr Comp Physiol. 2018;314(1):R71–R83.

 13. Shankar K, et al. Ghrelin protects against insu-
lin-induced hypoglycemia in a mouse model of 
type 1 diabetes mellitus. Front Endocrinol (Laus-
anne). 2020;11:606.

leptin-deficient ob/ob mice has paradox-
ical effects on glucose homeostasis when 
compared with ablation of ghrelin in ob/
ob mice. Am J Physiol Endocrinol Metab. 
2012;303(3):E422–E431.

 11. Kurashina T, et al. The β-cell GHSR and down-
stream cAMP/TRPM2 signaling account for 
insulinostatic and glycemic effects of ghrelin. Sci 
Rep. 2015;5:14041.

prevent high-fat diet-induced glucose intoler-
ance. Diabetes. 2006;55(12):3486–3493.

 8. Dezaki K, Yada T. Status of ghrelin as an islet 
hormone and paracrine/autocrine regulator of 
insulin secretion. Peptides. 2022;148:170681.

 9. Sakata N, et al. Development and character-
istics of pancreatic epsilon cells. Int J Mol Sci. 
2019;20(8):1867.

 10. Ma X, et al. Ablation of ghrelin receptor in 

https://doi.org/10.1172/JCI175799
https://doi.org/10.1152/ajpregu.00157.2017
https://doi.org/10.1152/ajpregu.00157.2017
https://doi.org/10.1152/ajpregu.00157.2017
https://doi.org/10.1152/ajpregu.00157.2017
https://doi.org/10.1152/ajpregu.00157.2017
https://doi.org/10.3389/fendo.2020.00606
https://doi.org/10.3389/fendo.2020.00606
https://doi.org/10.3389/fendo.2020.00606
https://doi.org/10.3389/fendo.2020.00606
https://doi.org/10.1152/ajpendo.00576.2011
https://doi.org/10.1152/ajpendo.00576.2011
https://doi.org/10.1152/ajpendo.00576.2011
https://doi.org/10.1152/ajpendo.00576.2011
https://doi.org/10.1152/ajpendo.00576.2011
https://doi.org/10.1038/srep14041
https://doi.org/10.1038/srep14041
https://doi.org/10.1038/srep14041
https://doi.org/10.1038/srep14041
https://doi.org/10.2337/db06-0878
https://doi.org/10.2337/db06-0878
https://doi.org/10.1016/j.peptides.2021.170681
https://doi.org/10.1016/j.peptides.2021.170681
https://doi.org/10.1016/j.peptides.2021.170681
https://doi.org/10.3390/ijms20081867
https://doi.org/10.3390/ijms20081867
https://doi.org/10.3390/ijms20081867
https://doi.org/10.1152/ajpendo.00576.2011

